skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhao, Q"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sreenivasan, S.V. (Ed.)
    A major challenge of the large-scale application of two-dimensional (2D) materials is the scaling up of the process for its growth and transfer. Mechanical peeling has been demonstrated to be a promising method for transferring graphene in a fast and environmentally friendly manner. However, efforts in scaling up the process have been lacking. Performing mechanical peeling using a roll-to-roll (R2R) system could significantly increase the throughput of graphene transfer. Such a R2R process does not exist in industry. In this paper a novel R2R mechanical peeling system that has both speed and tension control capabilities is presented. Controllers that control the peeling tensions on both sides of the peeling front are developed based on a tension dynamics model. Both controllers contain a feedback and a feedforward term to account for large steady-state error. The control performance is validated using both experiments and simulation, demonstrating that the R2R mechanical peeling technique can be a viable method for dry transfer of 2D materials in a high-throughput industrial setting. 
    more » « less